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Introduction to Numerical Methods 

 

After reading this chapter, you should be able to: 

1- understand the need for numerical methods, and 

2- go through the stages (mathematical modeling, solving and implementation) 

of solving a particular physical problem. 

Mathematical models are an integral part in solving engineering problems. 

Many times, these mathematical models are derived from engineering and science 

principles, while at other times the models may be obtained from experimental 

data. 

Mathematical models generally result in need of using mathematical 

procedures that include but are not limited to  

(A) differentiation, 

(B) nonlinear equations, 

(C) simultaneous linear equations, 

(D) curve fitting by interpolation or regression, 

(E) integration, and 

(F) differential equations. 

These mathematical procedures may be suitable to be solved exactly as you 

must have experienced in the series of calculus courses you have taken, but in most 

cases, the procedures need to be solved approximately using numerical methods. 

Let us see an example of such a need from a real-life physical problem.   

 To make the fulcrum (Figure 1) of a bascule bridge, a long hollow steel 

shaft called the trunnion is shrinking fit into a steel hub. The resulting steel 

trunnion-hub assembly is then shrink fit into the girder of the bridge. 

                                                                          

 

Figure 1 Trunnion-Hub-Girder (THG) assembly. 

 

Trunnion 

Hub 

Girder 
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This is done by first immersing the trunnion in a cold medium such as a dry 

ice/alcohol mixture. After the trunnion reaches the steady state temperature of the 

cold medium, the trunnion outer diameter contracts.  The trunnion is taken out of 

the medium and slid through the hole of the hub (Figure 2).   

 

 

  

 

 

 

Figure 2  Trunnion slided through the hub after contracting 

When the trunnion heats up, it expands and creates an interference fit with 

the hub.  In 1995, on one of the bridges in Florida, this assembly procedure did not 

work as designed.  Before the trunnion could be inserted fully into the hub, the 

trunnion got stuck.  Luckily, the trunnion was taken out before it got stuck 

permanently. Otherwise, a new trunnion and hub would be needed to be ordered at 

a cost of $50,000. Coupled with construction delays, the total loss could have been 

more than a hundred thousand dollars. 

Why did the trunnion get stuck?  This was because the trunnion had not 

contracted enough to slide through the hole. Can you find out why? 

 A hollow trunnion of outside diameter "363.12  is to be fitted in a hub of inner 

diameter "358.12 . The trunnion was put in dry ice/alcohol mixture (temperature of 

the fluid - dry ice/alcohol mixture is F108 ) to contract the trunnion so that it can 

be slid through the hole of the hub. To slide the trunnion without sticking, a 

diametrical clearance of at least "01.0  is required between the trunnion and the 

hub. Assuming the room temperature is 80F, is immersing the trunnion in dry-

ice/alcohol mixture a correct decision? 

 To calculate the contraction in the diameter of the trunnion, the thermal 

expansion coefficient at room temperature is used.  In that case the reduction D  

in the outer diameter of the trunnion is 

 TDD             (1) 
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Where 

D = outer diameter of the trunnion, 

  coefficient of thermal expansion coefficient at room temperature, and  

T  change in temperature, 

Given 

 D = "363.12  

 Fin/in/1047.6 6    at F80  
          T roomfluid TT    

      = 80108          

      F188  

Where  

fluidT = temperature of dry-ice/alcohol mixture 

roomT = room temperature 

The reduction in the outer diameter of the trunnion is given by 

  1881047.6)363.12( 6  D  

        = "01504.0  

 So the trunnion is predicted to reduce in diameter by "01504.0 . But, is this 

enough reduction in diameter?  As per specifications, the trunnion needs to 

contract by 

 = trunnion outside diameter - hub inner diameter + diametric clearance 

 = 12.363 – 12.358 + 0.01 

 = "015.0  

 So according to his calculations, immersing the steel trunnion in dry-

ice/alcohol mixture gives the desired contraction of greater than "015.0  as the 

predicted contraction is "01504.0 . But, when the steel trunnion was put in the hub, 

it got stuck. 

Why did this happen?  Was our mathematical model adequate for this 

problem or did we create a mathematical error? 

 As shown in Figure 3 and Table 1, the thermal expansion coefficient of steel 

decreases with temperature and is not constant over the range of temperature the 

trunnion goes through. Hence, Equation (1) would overestimate the thermal 

contraction. 
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Figure 3 Varying thermal expansion coefficient as a function of 

temperature for cast steel. 

 

The contraction in the diameter of the trunnion for which the thermal 

expansion coefficient varies as a function of temperature is given by 



fluid

room

T

T

dTDD                                             (2) 

So one needs to curve fit the data to find the coefficient of thermal expansion 

as a function of temperature.  This is done by regression where we best fit a curve 

through the data given in Table 1. In this case, we may fit a second order 

polynomial 

2

210 TaTaa          (3) 

           Table 1 Instantaneous thermal expansion coefficient as a function of 

temperature. 

Temperature 
Instantaneous 

Thermal Expansion 

F  Fμin/in/   

80 6.47 

60 6.36 

40 6.24 

20 6.12 

0 6.00 

-20 5.86 

-40 5.72 

-60 5.58 
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-80 5.43 

-100 5.28 

-120 5.09 

-140 4.91 

-160 4.72 

-180 4.52 

-200 4.30 

-220 4.08 

-240 3.83 

-260 3.58 

-280 3.33 

-300 3.07 

-320 2.76 

-340 2.45 

The values of the coefficients in the above Equation (3) will be found by 

polynomial regression (we will learn how to do this later). At this point we are just 

going to give you these values and they are 
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To give the polynomial regression model (Figure 4) as 

2

210 TaTaa   

   21196 T101.2278T106.1946106.0150    

Knowing the values of 0a , 1a  and 2a , we can then find the contraction in the 

trunnion diameter as 

dTTaTaaDD

fluid

room

T

T

)( 2

210   

]
3
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Which gives 
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Figure 4   Second order polynomial regression model for coefficient of thermal 

expansion as a function of temperature. 

 

What do we find here?  The contraction in the trunnion is not enough to 

meet the required specification of "015.0 .  

 

 So what is the solution to the problem? 

One solution is to immerse the trunnion in liquid nitrogen which has a boiling 

point of -321
o
F as opposed to the dry-ice/alcohol temperature of -108

o
F. 

"0244.0D  

 Revisiting steps to solve a problem 

1) Problem Statement: Trunnion got stuck in the hub. 

2) Modeling: Developed a new model 

                                          dTTDD
c

a

T

T

)(   

3) Solution: a) Used trapezoidal rule OR  

                    b) Used regression and integration. 

4) Implementation: Cool the trunnion in liquid nitrogen 
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Measuring Errors 

 

After reading this chapter, you should be able to: 

1. find the true and relative true error, 

2. find the approximate and relative approximate error, 

3. relate the absolute relative approximate error to the number of 

significant digits at least correct in your answers, and 

4. know the concept of significant digits. 

 

 In any numerical analysis, errors will arise during the calculations.  To be 

able to deal with the issue of errors, we need to  

(G) identify where the error is coming from, followed by 

(H) quantifying the error, and lastly 

(I) minimize the error as per our needs.   

In this chapter, we will concentrate on item (B), that is, how to quantify errors. 

 

Q: What is true error? 

A: True error denoted by tE  is the difference between the true value (also called 

the exact value) and the approximate value. 

True Error   True value – Approximate value 

Example 1 

The derivative of a function )(xf  at a particular value of x  can be approximately 

calculated by 

h

xfhxf
xf

)()(
)(


  

 of )2(f   For xexf 5.07)(   and 3.0h , find 

 a) the approximate value of )2(f   

 b) the true value of )2(f   

 c) the true error for part (a) 

Solution 

a)  
h

xfhxf
xf

)()(
)(


  

For 2x  and 3.0h ,  
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3.0

)2()3.02(
)2(

ff
f


  

           
3.0

)2()3.2( ff 
  

                   
3.0

77 )2(5.0)3.2(5.0 ee 
  

          
3.0

028.19107.22 
  

                     265.10  

b) The exact value of )2(f  can be calculated by using our knowledge of differential 

calculus. 
xexf 5.07)(   

xexf 5.05.07)('   

        xe 5.05.3  

So the true value of )2('f  is 
)2(5.05.3)2(' ef   

          5140.9  

c) True error is calculated as 

 tE = True value – Approximate value 

              265.105140.9   

     75061.0  

The magnitude of true error does not show how bad the error is.  This brings 

us to the definition of relative true error. 

 

Q: What is relative true error? 

A:  Relative true error is denoted by t  and is defined as the ratio between the true 

error and the true value. 

Relative True Error 
Value True

Error True
  

Example 2 

The derivative of a function )(xf  at a particular value of x  can be approximately 

calculated by 

h

xfhxf
xf

)()(
)('


  

For xexf 5.07)(   and 3.0h , find the relative true error at 2x . 
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Solution 

From Example 1,   

tE = True value – Approximate value 

                265.105140.9   

       75061.0  

Relative true error is calculated as 

Value True

Error True
t  

     
5140.9

75061.0
  

              078895.0  

Relative true errors are also presented as percentages. For this example, 
%1000758895.0 t  

    %58895.7  

Absolute relative true errors may also need to be calculated. In such cases, 

|075888.0| t  

              = 0.0758895 

              = %58895.7  

 

Q: What is approximate error? 

A: In the previous section, we discussed how to calculate true errors.  Such errors 

are calculated only if true values are known.  An example where this would be 

useful is when one is checking if a program is in working order and you know 

some examples where the true error is known.  But mostly we will not have the 

luxury of knowing true values as why you would want to find the approximate 

values if you know the true values.  So when we are solving a problem 

numerically, we will only have access to approximate values. We need to know 

how to quantify error for such cases. 

        Approximate error is denoted by aE  and is defined as the difference between 

the present approximation and previous approximation. 

       Approximate Error Present Approximation – Previous Approximation 
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Example 3 

The derivative of a function )(xf  at a particular value of x  can be approximately 

calculated by 

h

xfhxf
xf

)()(
)('


  

For xexf 5.07)(  and at 2x , find the following 

 a) )2(f   using 3.0h  

 b) )2(f   using 15.0h  

 c) approximate error for the value of )2(f   for part (b)  

Solution 

a) The approximate expression for the derivative of a function is 

 
h

xfhxf
xf

)()(
)('


 . 

For 2x  and 3.0h ,  

3.0

)2()3.02(
)2('

ff
f


  

           
3.0

)2()3.2( ff 
  

                    
3.0

77 )2(5.0)3.2(5.0 ee 
  

            
3.0

028.19107.22 
  

                     265.10  

b) Repeat the procedure of part (a) with ,15.0h  

h

xfhxf
xf

)()(
)(


  

    For 2x  and 15.0h ,  

15.0

)2()15.02(
)2('

ff
f


  

          
15.0

)2()15.2( ff 
  

          
15.0

77 )2(5.0)15.2(5.0 ee 
  

          
15.0

028.1950.20 
  

          8799.9  
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c) So the approximate error, aE is  

             aE Present Approximation – Previous Approximation 

                   265.108799.9   

                   38474.0  

The magnitude of approximate error does not show how bad the error is. 

This brings us to the definition of relative approximate error. 

 

Q: What is relative approximate error? 

A: Relative approximate error is denoted by a  and is defined as the ratio between 

the approximate error and the present approximation. 

             Relative Approximate Error 
ionApproximatPresent 

Error eApproximat
  

Example 4 

The derivative of a function )(xf  at a particular value of x  can be approximately 

calculated by 

h

xfhxf
xf

)()(
)('


  

For xexf 5.07)(  , find the relative approximate error in calculating )2(f  using 

values from 3.0h  and 15.0h . 

Solution 

From Example 3, the approximate value of 263.10)2( f  using 3.0h  and 

8800.9)2(' f using 15.0h . 

aE Present Approximation – Previous Approximation 

              265.108799.9   

              38474.0  

The relative approximate error is calculated as  

a
ionApproximatPresent 

Error eApproximat
 

                 
8799.9

38474.0
  

                 038942.0  

Relative approximate errors are also presented as percentages. For this example, 
%100038942.0 a  

             = %8942.3  
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Absolute relative approximate errors may also need to be calculated.  In this 

example 

|038942.0| a  

                  038942.0  or 3.8942% 

 

Q: While solving a mathematical model using numerical methods, how can we 

use relative approximate errors to minimize the error? 

A: In a numerical method that uses iterative methods, a user can calculate relative 

approximate error a  at the end of each iteration.  The user may pre-specify a 

minimum acceptable tolerance called the pre-specified tolerance, s .  If the 

absolute relative approximate error a  is less than or equal to the pre-specified 

tolerance s , that is,  || a s , then the acceptable error has been reached and no 

more iterations would be required.  Alternatively, one may pre-specify how 

many significant digits they would like to be correct in their answer. In that case, if 

one wants at least m  significant digits to be correct in the answer, then you would 

need to have the absolute relative approximate error, m

a

 2105.0|| %. 

 

Example 5 

If one chooses 6 terms of the Maclaurin series for xe  to calculate 7.0e , how many 

significant digits can you trust in the solution? Find your answer without knowing 

or using the exact answer. 

Solution 

.................
!2

1
2


x

xe x  

Using 6 terms, we get the current approximation as  

!5

7.0

!4

7.0

!3

7.0

!2

7.0
7.01

5432
7.0 e  

      0136.2  

 Using 5 terms, we get the previous approximation as 

!4

7.0

!3

7.0

!2

7.0
7.01

432
7.0 e  

     0122.2  
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The percentage absolute relative approximate error is 

100
0136.2

0122.20136.2



a  

      %069527.0  

Since %105.0 22a , at least 2 significant digits are correct in the answer of  

 0136.27.0 e  

 

Q: But what do you mean by significant digits?   

A: Significant digits are important in showing the truth one has in a reported 

number. For example, if someone asked me what the population of my county is, I 

would respond, “The population of the Hillsborough county area is 1 million”.  

But if someone was going to give me a $100 for every citizen of the county, I would 

have to get an exact count.  That count would have been 1,079,587 in year 2003.  

So you can see that in my statement that the population is 1 million, that there is 

only one significant digit, that is, 1, and in the statement that the population is 

1,079,587, there are seven significant digits.  So, how do we differentiate the 

number of digits correct in 1,000,000 and 1,079,587?  Well for that, one may use 

scientific notation. For our data we show 

6

6

10079587.1587,079,1

101000,000,1




 

to signify the correct number of significant digits. 

Example 5 

Give some examples of showing the number of significant digits. 

Solution 

a) 0.0459 has three significant digits 

b) 4.590 has four significant digits 

c) 4008 has four significant digits 

d) 4008.0 has five significant digits 

e) 310079.1   has four significant digits 

f) 3100790.1   has five significant digits 

g) 31007900.1   has six significant digits 
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Sources of Error 
 

After reading this chapter, you should be able to: 

5. know that there are two inherent sources of error in numerical methods – 

round-off and truncation error,  

6. recognize the sources of round-off and truncation error, and 

7. know the difference between round-off and truncation error. 

 

 Error in solving an engineering or science problem can arise due to several 

factors. First, the error may be in the modeling technique.  A mathematical model 

may be based on using assumptions that are not acceptable.  Second, errors may 

arise from mistakes in programs themselves or in the measurement of physical 

quantities.  But, in applications of numerical methods itself, the two errors we need 

to focus on are 

1. Round off error 

2. Truncation error. 

 

Q: What is round off error? 

A: A computer can only represent a number approximately.  For example, a 

number like 
3

1
 may be represented as 0.333333 on a PC.  Then the round off error 

in this case is  

00000033.0333333.0
3

1
 . Then there are other numbers that cannot be represented 

exactly. For example,   and 2  are numbers that need to be approximated in 

computer calculations. 

 

Q: What is truncation error? 

A: Truncation error is defined as the error caused by truncating a mathematical 

procedure. For example, the Maclaurin series for xe  is given as  

....................
!3!2

1
32


xx

xe x  

This series has an infinite number of terms but when using this series to calculate 
xe , only a finite number of terms can be used.  For example, if one uses three terms 

to calculate xe , then 
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.
!2

1
2x

xex   

the truncation error for such an approximation is 

Truncation error = ,
!2

1
2











x
xe x  

           .......................
!4!3

43


xx

 

But, how can truncation error be controlled in this example?  We can use 

the concept of relative approximate error to see how many terms need to be 

considered.  Assume that one is calculating 2.1e  using the Maclaurin series, then 

...................
!3

2.1

!2

2.1
2.11

32
2.1 e  

Let us assume one wants the absolute relative approximate error to be less 

than 1%.  In Table 1, we show the value of 2.1e , approximate error and absolute 

relative approximate error as a function of the number of terms, n . 

n  2.1e  aE  %a  

1 1 - - 

2   2.2 1.2 54.546 

3 2.92 0.72 24.658 

4 3.208 0.288 8.9776 

5 3.2944 0.0864 2.6226 

6 3.3151 0.020736 0.62550 

   

Using 6 terms of the series yields a a < 1%. 

 

Q: Can you give me other examples of truncation error? 

A: In many textbooks, the Maclaurin series is used as an example to illustrate 

truncation error.  This may lead you to believe that truncation errors are just 

chopping a part of the series.  However, truncation error can take place in other 
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mathematical procedures as well.  For example to find the derivative of a function, 

we define 

x

xfxxf
xf






)()(
)(  

       For example, in finding )3(f   for 2)( xxf  , we have the exact value calculated 

as follows. 

xxf 2)(   

The exact value of )3(f   is 

32)3( f  

        6  

If we now choose 2.0x , we get 

2.0

)3()2.03(
)3(

ff
f


  

           
2.0

)3()2.3( ff 
  

            =
2.0

32.3 22 
 

            
2.0

924.10 
  

            
2.0

24.1
  

            2.6  
 

We purposefully chose a simple function 2)( xxf   with value of 2x and 

2.0x  because we wanted to have no round-off error in our calculations so that 

the truncation error can be isolated.  The truncation error in this example is 

.2.02.66   

 

Can you reduce the truncate error by choosing a smaller x ? 

Another example of truncation error is the numerical integration of a function, 


b

a

dxxfI )(  

 Exact calculations require us to calculate the area under the curve by 

adding the area of the rectangles as shown in Figure 2. However, exact 

calculations require an infinite number of such rectangles.  Since we cannot 

choose an infinite number of rectangles, we will have truncation error. 
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 For example, to find  

 dxx
9

3

2 ,  

we have the exact value as 

 
9

3

2dxx

9

3

3

3










x
 

            






 


3

39 33

 

            234  

If we now choose to use two rectangles of equal width to approximate the 

area (see Figure 2) under the curve, the approximate value of the integral  

)69()()36()(
6

2

3

2

9

3

2 
 xx

xxdxx  

                       3)6(3)3( 22   

                       10827   

                       135  

         
Figure 2   Plot of 2xy   showing the approximate area under the curve 

from 3x  to 9x  using two rectangles. 
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 Again, we purposefully chose a simple example because we wanted to have 

no round off error in our calculations.  This makes the obtained error purely 

truncation.  The truncation error is 

99135234   

 

Can you reduce the truncation error by choosing more rectangles?  What is the 

truncation error? 

Propagation of Errors 

 

If a calculation is made with numbers that are not exact, then the calculation 

itself will have an error.  How do the errors in each individual number propagate 

through the calculations? Let’s look at the concept via some examples. 

 

Example 1 

Find the bounds for the propagation error in adding two numbers. For example if 

one is calculating YX  where  

05.05.1 X ,  

 . 

Solution 

By looking at the numbers, the maximum possible values of X and Y are 

55.1X  and 44.3Y  

Hence 

99.444.355.1 YX   

is the maximum value of YX  . 

The minimum possible values of X and Y are 

45.1X  and 36.3Y .  

Hence  

36.345.1 YX  

            81.4  

is the minimum value of YX  .  

Hence 

04.04.3 Y
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.99.481.4  YX  

 

 What if the evaluations we are making are function evaluations instead?  How 

do we find the value of the propagation error in such cases? 

 If  f  is a function of several variables nn XXXXX ,,.......,,, 1321  , then the 

maximum possible value of the error in f  is 

n

n

n

n

X
X

f
X

X

f
X

X

f
X

X

f
f 



















 



1

1

2

2

1

1

.......  

Example 2  

The strain in an axial member of a square cross-section is given by 

Eh

F
2

  

where  

F =axial force in the member, N 

h = length or width of the cross-section, m 

E =Young’s modulus, Pa 

Given 

N9.072F  

mm1.04h  

GPa5.170E  

Find the maximum possible error in the measured strain. 

Solution 

)1070()104(

72
923 




 

   610286.64   

   m286.64  

E
E

h
h

F
F















  

EhF 2

1





 

Eh

F

h 3

2





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22 Eh

F

E





 

E
Eh

F
h

Eh

F
F

Eh
E 

2232

21
 

      
9

2923

933923

105.1
)1070()104(

72

0001.0
)1070()104(

722
9.0

)1070()104(

1



















 

                 667 103776.1102143.3100357.8    

                 6103955.5   

        m3955.5  

Hence 

)3955.5286.64( mm   

implying that the axial strain,  is between  m8905.58  and m6815.69  

 

Example 3  

Subtraction of numbers that are nearly equal can create unwanted inaccuracies.  

Using the formula for error propagation, show that this is true. 

Solution 

Let 

yxz   

Then 

y
y

z
x

x

z
z 









  

    yx  )1()1(  

   yx   

So the absolute relative change is 

yx

yx

z

z







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As x  and y  become close to each other, the denominator becomes small and 

hence create large relative errors. 

For example if 

001.02x  

001.0003.2 y  

|003.22|

001.0001.0








z

z
 

        = 0.6667 

        = 66.67% 
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